Thursday, 13 October 2011

Rumus Rumus Trigonometri

Makale-Nikodemus Saung Blog




A. Bentuk Umum


B. Sudut-Sudut Istimewa


C. Hubungan Sudut Berelasi antara Sin, Cos dan Tangen



D. Rumus-rumus Trigonometri

1. Aturan sinus


2. Aturan Cosinus


3. Luas Segitiga ABC


4. Jumlah dan Selish Dua Sudut



5. Sudut 2A (Sudut Kembar)


6. Hasil Kali Dua Fungsi Trigonometri


7. 
Jumlah Selisih Dua Fungsi Trigonometri


8. Persamaan Trigonometri


9. Bentuk a Cos x + b Sin x


10. Bentuk a Cos x + b Sin x = c

11. Nilai Maksimum dan Minimum Fungsi f(x) =a Cos x + b Sin x

PENJUMLAHAN DUA SUDUT (a + b)
sin(a + b)  = sin a cos b + cos a sin bcos(a + b) = cos a cos b - sin a sin btg(a + b )   = tg a + tg b
                 1 - tg2a
 


SELISIH DUA SUDUT
 (a - b)
sin(a - b)  = sin a cos b - cos a sin bcos(a - b) = cos a cos b + sin a sin btg(- b )   = tg a - tg b
                 1 + tg2a
 


SUDUT RANGKAP
sin 2
a  = 2 sin a cos a
cos 2
a = cos2a - sin2 a
 = 2 cos2
a - 1
 = 1 - 2 sin2
a
tg 2
a  =  2 tg 2a 
            1 - tg2
a
sin 
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a  = ½ (1 - cos 2a)

Secara umum :


sin n
a  = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin½n
a
tg n
a =   2 tg ½na  
           1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN 
® PERKALIAN
sin 
a + sin b   = 2 sin a + b    cos a - b
                                2              2
sin 
a - sin b   = 2 cos a + b    sin a - b
                                2             2
cos 
a + cos b = 2 cos a + b    cos a - b
                                 2              2
cos 
a + cos b = - 2 sin a + b   sin a - b
                                  2             2

BENTUK PERKALIAN 
® PENJUMLAHAN 
2 sin
 a cos b = sin (a + b) + sin (a - b)
2 cos
 a sin b = sin (a + b) - sin (a - b)
2 cos
 a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA
Bentuk a cos x + b sin x
Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - 
a)

a cos x + b sin x = K cos (x-
a)
dengan :                     
             K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

PERSAMAAN
I. sin x = sin 
a Þ x1 = a + n.360°
                         x2 = (180° - 
a) + n.360°



    cos x = cos 
a Þ x = ± a + n.360°


tg x = tg a 
Þ x = a + n.180°    (n = bilangan bulat)
II. a cos x + b sin x = c
     a cos x + b sin x = C
            K cos (x-
a) = C
               cos (x-
a) = C/K     syarat persamaan ini dapat diselesaikan
     -1 
£ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar)

misalkan C/K = cos 
b
  cos (x - 
a) = cos b
        (x - 
a) = ± b + n.360° ® x = (a ± b+ n.360°

0 comments: